1.

Wei, L., Wang, H., Özkan, M., Damian-Buda, A.-I., Loynachan, C.N., Liao, S., and Stellacci, F. (2025). Efficient Direct Cytosolic Protein Delivery via Protein-Linker Co-engineering. ACS Appl. Mater. Interfaces 17, 27858–27870. https://doi.org/10.1021/acsami.5c02360.

2.

Casmil, I.C., Jin, J., Won, E.-J., Huang, C., Liao, S., Cha-Molstad, H., and Blakney, A.K. (2025). The advent of clinical self-amplifying RNA vaccines. Molecular Therapy 0. https://doi.org/10.1016/j.ymthe.2025.03.060.

3.

Liao, S., Wang, S., Wadhwa, A., Birkenshaw, A., Fox, K., Cheng, M.H.Y., Casmil, I.C., Magana, A.A., Bathula, N.V., Ho, C.H., et al. (2024). Transfection Potency of Lipid Nanoparticles Containing mRNA Depends on Relative Loading Levels. ACS Appl. Mater. Interfaces. https://doi.org/10.1021/acsami.4c20077.

4.

G. Popova, P., Chen, S.P., Liao, S., Sadarangani, M., and Blakney, A.K. (2024). Clinical perspective on topical vaccination strategies. Advanced Drug Delivery Reviews 208, 115292. https://doi.org/10.1016/j.addr.2024.115292.

5.

Chen, S.P., Wang, S., Liao, S., and Blakney, A.K. (2024). Exploring the Effects of Incorporating Different Bioactive Phospholipids into Messenger Ribonucleic Acid Lipid Nanoparticle (mRNA LNP) Formulations. ACS Bio Med Chem Au. https://doi.org/10.1021/acsbiomedchemau.4c00085.

6.

Casmil, I.C., Bathula, N.V., Huang, C., Wayne, C.J., Cairns, E.S., Friesen, J.J., Soriano, S.K., Liao, S., Ho, C.H., Kong, K.Y.S., et al. (2024). Alphaviral backbone of self-amplifying RNA enhances protein expression and immunogenicity against SARS-CoV-2 antigen. Molecular Therapy 0. https://doi.org/10.1016/j.ymthe.2024.12.055.

7.

Bathula, N.V., Friesen, J.J., Casmil, I.C., Wayne, C.J., Liao, S., Soriano, S.K.V., Ho, C.H., Strumpel, A., and Blakney, A.K. (2024). Delivery vehicle and route of administration influences self-amplifying RNA biodistribution, expression kinetics, and reactogenicity. Journal of Controlled Release 374, 28–38. https://doi.org/10.1016/j.jconrel.2024.07.078.

8.

Liao, S., Wei, L., Bouchez, A.E., and Stellacci, F. (2023). Influence of structural dynamics on cell uptake investigated with single-chain polymeric nanoparticles. Chem 9, 1562–1577. https://doi.org/10.1016/j.chempr.2023.03.012.

9.

Liao, S., Wei, L., Abriata, L.A., and Stellacci, F. (2021). Control and Characterization of the Compactness of Single-Chain Nanoparticles. Macromolecules. https://doi.org/10.1021/acs.macromol.1c02071.

10.

Yang, Y., Liao, S., Luo, Z., Qi, R., Mac Fhionnlaoich, N., Stellacci, F., and Guldin, S. (2020). Comparative characterisation of non-monodisperse gold nanoparticle populations by X-ray scattering and electron microscopy. Nanoscale 12, 12007–12013. https://doi.org/10.1039/C9NR09481D.

11.

Tao, A., Huang, G.L., Igarashi, K., Hong, T., Liao, S., Stellacci, F., Matsumoto, Y., Yamasoba, T., Kataoka, K., and Cabral, H. (2020). Polymeric Micelles Loading Proteins through Concurrent Ion Complexation and pH-Cleavable Covalent Bonding for In Vivo Delivery. Macromolecular Bioscience 20, 1900161. https://doi.org/10.1002/mabi.201900161.

12.

Liao, S., Luo, Z., Bastian Metternich, J., Zenobi, R., and Stellacci, F. (2020). Quantification of surface composition and segregation on AuAg bimetallic nanoparticles by MALDI MS. Nanoscale 12, 22639–22644. https://doi.org/10.1039/D0NR05061J.

13.

Wang, H., Huang, Y., Liao, S., He, H., and Wu, H. (2019). Tin Oxide Nanofiber and 3D Sponge Structure by Blow Spinning. IOP Conf. Ser.: Earth Environ. Sci. 358, 052015. https://doi.org/10.1088/1755-1315/358/5/052015.

14.

Bekdemir, A., Liao, S., and Stellacci, F. (2019). On the effect of ligand shell heterogeneity on nanoparticle/protein binding thermodynamics. Colloids and Surfaces B: Biointerfaces 174, 367–373. https://doi.org/10.1016/j.colsurfb.2018.11.027.

15.

Liao, S., Huang, Y., and Wu, H. (2017). Functional Nanofibers for Flexible Electronics. In Smart Sensors and Systems: Innovations for Medical, Environmental, and IoT Applications, C.-M. Kyung, H. Yasuura, Y. Liu, and Y.-L. Lin, eds. (Springer International Publishing), pp. 335–358. https://doi.org/10.1007/978-3-319-33201-7_12.

16.

Liao, S., Bai, X., Song, J., Zhang, Q., Ren, J., Zhao, Y., and Wu, H. (2017). Draw-Spinning of Kilometer-Long and Highly Stretchable Polymer Submicrometer Fibers. Advanced Science 4, 1600480. https://doi.org/10.1002/advs.201600480.

17.

Bai, X., Liao, S., Huang, Y., Song, J., Liu, Z., Fang, M., Xu, C., Cui, Y., and Wu, H. (2017). Continuous Draw Spinning of Extra-Long Silver Submicron Fibers with Micrometer Patterning Capability. Nano Lett. 17, 1883–1891. https://doi.org/10.1021/acs.nanolett.6b05205.

18.

Xu, S., Wu, Z., Hong, Y., Xue, Q., Liao, S., and Liu, B. (2016). Optimization of High Performance Computing Cluster based on Intel MIC. In 2016 2nd IEEE International Conference on Computer and Communications (ICCC), pp. 1028–1033. https://doi.org/10.1109/CompComm.2016.7924860.

19.

Wang, H., Liao, S., Bai, X., Liu, Z., Fang, M., Liu, T., Wang, N., and Wu, H. (2016). Highly Flexible Indium Tin Oxide Nanofiber Transparent Electrodes by Blow Spinning. ACS Appl. Mater. Interfaces 8, 32661–32666. https://doi.org/10.1021/acsami.6b13255.

20.

Huang, Y., Liao, S., Ren, J., Khalid, B., Peng, H., and Wu, H. (2016). A transparent, conducting tape for flexible electronics. Nano Res. 9, 917–924. https://doi.org/10.1007/s12274-015-0974-9.

21.

Huang, Y., Bai, X., Zhou, M., Liao, S., Yu, Z., Wang, Y., and Wu, H. (2016). Large-Scale Spinning of Silver Nanofibers as Flexible and Reliable Conductors. Nano Lett. 16, 5846–5851. https://doi.org/10.1021/acs.nanolett.6b02654.